Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Image inpainting algorithm of multi-scale generative adversarial network based on multi-feature fusion
Gang CHEN, Yongwei LIAO, Zhenguo YANG, Wenying LIU
Journal of Computer Applications    2023, 43 (2): 536-544.   DOI: 10.11772/j.issn.1001-9081.2022010015
Abstract422)   HTML19)    PDF (4735KB)(161)       Save

Aiming at the problems in Multi-scale Generative Adversarial Networks Image Inpainting algorithm (MGANII), such as unstable training in the process of image inpainting, poor structural consistency, insufficient details and textures of the inpainted image, an image inpainting algorithm of multi-scale generative adversarial network was proposed based on multi-feature fusion. Firstly, aiming at the problems of poor structural consistency and insufficient details and textures, a Multi-Feature Fusion Module (MFFM) was introduced in the traditional generator, and a perception-based feature reconstruction loss function was introduced to improve the ability of feature extraction in the dilated convolutional network, thereby supplying more details and texture features for the inpainted image. Then, a perception-based feature matching loss function was introduced into local discriminator to enhance the discrimination ability of the discriminator, thereby improving the structural consistency of the inpainted image. Finally, a risk penalty term was introduced into the adversarial loss function to meet the Lipschitz continuity condition, so that the network was able to converge rapidly and stably in the training process. On the dataset CelebA, compared with MANGII, the proposed multi-feature fusion image inpainting algorithm can converges faster. Meanwhile, the Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM) of the images inpainted by the proposed algorithm are improved by 0.45% to 8.67% and 0.88% to 8.06% respectively compared with those of the images inpainted by the baseline algorithms, and Frechet Inception Distance score (FID) of the images inpainted by the proposed algorithm is reduced by 36.01% to 46.97% than the images inpainted by the baseline algorithms. Experimental results show that the inpainting performance of the proposed algorithm is better than that of the baseline algorithms.

Table and Figures | Reference | Related Articles | Metrics